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The unified few-shot font generation repository: https://github.com/clovaai/fewshot-font-generation

clovaai/fewshot-font-generation included:

FUNIT (Liu, Ming-Yu, et al. ICCV 2019) : not originally proposed for FFG tasks, but we modify the
unpaired i2i framework to the paired i2i framework for FFG tasks.

DM-Font (Cha, Junbum, et al. ECCV 2020) : proposed for complete compositional scripts (e.g.,
Korean). If you want to test DM-Font in Chinese generation tasks, you have to modify the code
(or use other models).

LF-Font (Park, Song, et al. AAAI 2021) : originally proposed to solve the drawback of DM-Font,
but it still require component labels for generation. Our implementation allows to generate
characters with unseen component.

MX-Font (Park, Song, et al. ICCV 2021) : generating fonts by employing multiple experts where
each expert focuses on different local concepts.


https://arxiv.org/pdf/2104.00887.pdf
https://github.com/clovaai/fewshot-font-generation
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Figure 1. Cross-lingual few-shot font generation results by MX-
Font. With only four references, the proposed method, MX-Font,
can generate a high quality font library. Furthermore, we first show
the effectiveness of the proposed method on the zero-shot cross-
lingual few-shot generation task, i.e., generating unseen Korean
glyphs using the Chinese font generation model.

Abstract

Existing FFG methods aim to disentangle content and style either by extracting a universal
representation style or extracting multiple component-wise style representations.

However, previous methods either fail to capture diverse local styles or cannot be generalized to a
character with unseen components, e.g., unseen language systems.

To mitigate the issues, we propose a novel FFG method, named Multiple Localized Experts Few-
shot Font Generation Network (MXFont). MX-Font extracts multiple style features not explieitly
eonditioned on component labels, but automatically by multiple experts to represent different local
concepts, e.g., left-side sub-glyph.

During training, we utilize component labels as weak supervision to guide each expert to be
specialized for different local concepts.

We also employ the independence loss and the content-style adversarial loss to impose the

contentstyle disentanglement.
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(a) Universal style representation (b) Component-conditioned (c) Multiple localized experts (ours)

Figure 2. Comparison of FFG methods. Three different groups of FFG are shown. All methods combine style representation f. from a
few reference glyphs (Refs) by a style encoder (E;) and content representation f. from a source glyph (Source) by a content encoder (E.).
(a) Universal style representation methods extract only a single style feature for each font. (b) Component-conditioned methods extract
component conditioned style features to capture diverse local styles (c) Multiple localized experts method (ours) generates multiple local
features without an explicit condition, but attends different local information of the complex input glyph. The generated images in (a), (b)
and (c) are synthesized by AGIS-Net [12], LF-Font [ *7] and MX-Font, respectively.

Related Works

The universal style representation shows limited performances in capturing localized styles and
content structures. To address the issue, component-conditioned methods such as DM-Font [6],
LFFont [37], remarkably improve the stylization performance by employing localized style
representation, where the font style is described multiple localized styles instead of a single universal
style.

However, these methods require explicit component labels (observed during training) for the target
character even at the test time. This property limits practical usages such as cross-lingual font
generation. Our method inherits the advantages from component-guided multiple style
representations, but does not require the explicit labels at the test time.

Method

Model architecture

e Our method consists of three modules:
1. k-headed encoder, or localized experts E;
2. a generator G
3. style and component feature classifiers Cls, and Cls,,.
 The localized expert E; encodes a glyph image x into a local feature f;.
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Figure 3. Overview of MX-Font. Two modules of MX-Font used for the gencranon are described. The multiple localized experts (green
box) consist of k experts. E; (i.e. i-th expert) encodes the input image to the i-th local feature f, and the i-th style and content feature f, ;.
[e.i are computed from f;. The right yellow box shows how the generator (7 generates the target image. When & style features representing
the target style 5 and & content features representing the target style & are given, the target glyph having style 3 and character ¢ is generated
by passing the element-wisely concatenated style and content features to the .

Here, our localized experts are not supervised by component labels to obtain k local features
f1, -+, f; our local features are not component-specific features. We set the number of the

localized experts, k, to 6 in our experiments if not specified.
We employ two feature classifiers, Cls, and Cls,, to supervise f;; and f.;, which serve as

weak supervision for f;.
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Figure 5. Feature classifiers. Two feature classifiers, C'ls, and
C'ls,, are used during the training. C'ls. classifies the style features
to their style label y= while C'ls. predicts the uniform probability
from them. Similarly, C'ls,, classifies the content features to their
allocated component labels y,, while Cls, is fooled by them. The
details are described in § 3.2 and § 3.3.

These classifiers are only used during training but independent to the model inference itself.
Following the previous methods [6, 37], we use font library labels for style labels y,, and the

component labels U, for content labels ..
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Figure 4. An example of localized experts. The number of ex-
perts k is three (E, E2, E3), and the number of target component
labels m 1s four (uq, .. ., u4). Anedge between an expert E; and a
component u; means the prediction probability of u,; by E; using
the component classifier C'ls... Our goal is to find a set of edges
that maximizes the sum of predictions, where the number of the
selected edges are upper bounded by max(k, m) = 4 in this ex-
ample. The red edges illustrate the optimal solution.

The same decomposition rule used by LF-Font is adopted. While previous methods only use
the style (or content) classifier to train style (or content), we additionally utilize them for the
content and style disentanglement by introducing the content-style adversarial loss.

Learning multiple localized experts with weak local component supervision

o Because we do not want that an expert is explicitly assigned to a component label, e.g., strictly
mapping “A” component to E1, we solve an automatic allocation algorithm, finding the optimal
expert-component matching as shown in Figure 4.

» Specifically, we formulate the component allocation problem as the Weighted Bipartite B-Matching
problem, which can be optimally solved by the Hungarian algorithm.

LINFE (1§

Figure 7. Each localized expert attends different local areas. We
show the variance of Class Activation Maps (CAMs) on training
images for each expert. The brighter intensity indicates that the
variance of CAMs is higher in that region.
o We additionally formulate the independence between each expert by the Hilbert-Schmidt
Independence Criterion (HSIC) [16] which has been used in practice for statistical testing [16,

17], feature similarity measurement [28], and model regularization [38, 51, 3].
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Hilbert-Schmidt Independence Criterion (HSIC):
Formally, HSIC}"'(Z., Z,) is defined as:
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m(m — 3)
T 11T 7T ‘ o

VZATZIL 2 1y oon

(m—1)(m-—2) m-—2

(B.2)

whegpe (¢, j)-th element of a kernel matrix Z: is defined
as, Z.(i,7) = (1 — &;;) k(fL. fZ). and the i-th feature in
the mini-batch f?, is assumed to be sampled from the Z,,

ie.. {fﬁ} ~ Z.. We similarly define Z.(i,j) =

ﬂ-ij} E{f: Jﬁ”*

Content and style disentanglement

» To achieve perfect content and style disentanglement, the style (or content) features should
include the style (or content) domain information but exclude the content (or style) domain
information. We employ two objective functions for this: content-style adversarial loss and

independent loss.

e The content-style adversarial loss, motivated by the domain adversarial network [11], enforces the
extracted features for style (or content) is useless to classify content.

(1 -

Es.i(fs._iﬁ ys} = CE{CIHS{)CS._IE}‘ ysj - H{Cfsu[fs._i]}- (3)

E::.i{ff:.i-. lF-“r-:?} = Ecls.c.i(fc.iu U-r.‘} - H(CIS:; (fr:}}

disentanglement framework:

(6)
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Figure 5. Feature classifiers. Two feature classifiers, C'ls. and
Cls,, are used during the training. Cls. classifies the style features
to their style label ys while C'ls. predicts the uniform probability
from them. Similarly, Cls,, classifies the content features to their
allocated component labels y,, while Cls. is fooled by them. The
details are described in § 3.2 and § 3.3.

auxiliary component classification loss is defined as follow:

LotseilfeisUe) = Y wijCE(Clsu(fei), 7). (3)

JEU,

, where variables w;; is getting from Hungarian algorithm.

» We also employ the independence loss between content and style local features, fc,i and fsz for
the disentanglement of content and style representations.

£il‘]dp."i = HS]C{fS..‘i:« fn’:._t')- {?)

Training

We use the hinge generative adversarial loss L4, [52], feature matching loss Lfm, and pixel-
level reconstruction loss ..., by following the previous high fidelity GANs, e.g., BigGAN [4], and
state-of-the-art font generation methods, e.g., DM-Font [6] or LF-Font [37].

Now we describe our full objective function. The entire model is trained in an end-to-end manner with
the weighted sum of all losses, including (4), (5), (6), and (7).

Lp=LP, |
£G = £{ﬂ-;d'v + Ai'ﬁf:ﬂn":i‘ﬁ-::on + E_fm
. ®)
Ee.rp = Z [Es.t' + Ec,i + Eindp,i + Eindp Exp,i]
i=1

As conventional GAN training, we alternatively update Lp, Lg, and Lgy.



Experiments

Quantitative evaluation.

Following previous works [6, 37], we train evaluation classifiers that classifies character labels
(content-aware) and font labels (style-aware). Note that these classifiers are only used for evaluation,
and trained separately to the FFG models.

We conduct a user study for quantifying the subjective quality. The participants are asked to pick the
three best results, considering the style, the content, and the most preferred considering both the style
and the content.

We also report Learned Perceptual Image Patch Similarity (LPIPS) [53] scores to measure the
dissimilarity between the generated images and their corresponding ground truth images, thus it is
only reported for Chinese FFG task.

Acc(S)% Acc(C)% Acc(B)%  User(S)% User(C)% User(B)%  LPIPS | FID(H) |

EMD (CVPR'18) 6.6 513 46 0.7 0.1 0.3 0.212 9.7
6 AGIS-Net (TOG'19) 25.5 99.5 254 224 34.2 26.8 0.124 19.2
T FUNIT (ICCV'19) 34.0 94.6 31.8 229 21.6 222 0.147 19.2
Z LF-Font (AAAI'21) 58.7 96.9 57.0 19.5 12.3 15.6 0.119 14.8
“ MX-Font (proposed) 78.9 99.5 78.7 34.5 31.8 35.2 0.120 21.8
o EMD (CVPR'18) 4.6 154 0.8 0.8 0.1 0.1 - 150.1
¥ AGIS-Net (TOG'19) 13.3 32.1 3.1 1.8 0.6 0.6 - 146.5
T FUNIT (ICCV'19) 11.3 66.4 6.6 12.0 17.3 9.1 - 176.0
Z  LF-Font (AAAI'21) 47.6 28.7 12.8 10.6 0.7 1.0 - 148.7
“  MX-Font {proposed) 66.3 75.9 50.0 74.6 81.3 89.2 - 84.1

Table 1. Performance comparison on few-shot font generation scenario. The performances of five few-shot font generation methods
with four reference images are compared. We report accuracy measured by style-aware (Acc (S)) and content-aware (Acc (C)) classifiers
and accuracy considering both the style and content labels (Acc (B)). The summarized results of the user study are also reported. The User
preference on considering style (User (S)), content (User (C)), both of them (User (B)) are shown. LPIPS shows a perceptual dissimilarity
between the ground truth and the generated glyphs. The harmonic mean (H) of style-aware and content-aware FID is also reported. Note
that the FIDs are computed differently in two FFG scenarios. All numbers are average of 50 runs with different reference glyphs.

Qualitative evaluation
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Figure 6. Generated Samples. The generated images by five different models are shown. We also provide the reference and the source
images used for the generation in the top two rows. The available ground truth images (GT) are shown in the bottom row. We highlight the
samples that reveal the drawback of each model with colored boxes; green for AGIS-Net, red for FUNIT, and yellow for LF-Font.
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Figure 8. Generated samples of the models having different
number of heads. The samples generated with four reference
glyphs by the single-headed model and multi-headed model are
shown. We highlight the defects in red dotted circles that appeared
in the images generated by the single-expert model. k denotes the
number of experts.
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Acc(S)T Acc(C)T Acc(B)t LPIPS |

Ours (k = 1) 72.2 98.7 71.4 0.133
Ours (k = 6) 78.9 99.5 18.7 0.120

Table 2. Impact of the number of experts k. Single-expert model
(k = 1) and multiple-experts model (k = 6, proposed) are com-
pared on in-domain Chinese transfer benchmark.



Acc (S)T  Acc(C)T Acc(B)t LPIPS |

Ours (C'ls.,) 78.9 99.5 78.7 0.120
Ours (C'ls.) 94.8 0.04 0.04 0.214

Table 3. Comparing the component classifier and the character
classifier as weak supervision. We compare two auxiliary classi-
fiers as content supervision. Ours (C'ls, ) denotes MX-Font using
the component classifier and Ours (Cls.) denotes the model re-
placed the component classifier to the character classifier.

Lindgpi Hes Les Acc(S) Acc(C) Acc (B)

v v v 59.0 95.9 56.8
X v v 52.0 05.8 50.0
X X v 51.6 95.5 49.4
X X X 27.8 89.1 24.7

LE-Font [37] 38.5 95.2 36.5

Table 4. Impact of loss functions. We compare models by ablat-
ing the proposed object functions trained and tested on Korean-
handwriting dataset. The results show that the content-style adver-
sarial loss £, . and the maximizing entropy term H. . and inde-
pendent loss L;,,4,.; are all important components.

Appendix

In the cross-lingual FFG, MX-Font can produce promising results in that they are all readable.
Meanwhile, all other competitors provide inconsistent results, which are often impossible to
understand. These results show a similar conclusion as our main paper.
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Figure A2 Generation samples. We provide more generated glyphs with four reference glyphs.



