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Image Restoration

Image Restoration is a family of inverse problems for obtaining a high quality image from a
corrupted input image. Corruption may occur due to the image-capture process (e.g., noise, lens
blur), post-processing (e.g., JPEG compression), or photography in non-ideal conditions (e.g.,
haze, motion blur).

Examples of Image Restoration:


https://github.com/megvii-research/NAFNet
https://arxiv.org/abs/2204.0467
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Abstract

o Although there have been significant advances in the field of image restoration recently, the
system complexity of the SOTA methods is increasing as well, which may hinder the convenient
analysis and comparison of methods.

« In this paper, we propose a simple baseline that exceeds the SOTA methods and is
computationally efficient.



» We derive a Nonlinear Activation Free Network, namely NAFNet, from the baseline.
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Fig. 1: PSNR vs. computational cost on Image Deblurring (left) and Image Denoising (right) tasks.
(Peak signal-to-noise ratio, PSNR)
(Giga Multiply Add Caculation per Second, MACs)

Build A Simple Baseline

Architecture

« Inter-block Complexity are multi-stage networks, i.e. the latter stage refine the results of the
previous stage, and each stage is a U-shaped architecture.

e To reduce the inter-block complexity, we adopt the classic single-stage U-shaped architecture with
skip-connections, as shown in Figure 2c, following Restformer and Uformer.
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Fig. 2: Comparison of architectures of image restoration models. Dashes to distinguish features of
different sizes.

(a) The multi-stage architecture[4,35] stacks UNet architecture serially.

(b) The multi-scale fusion architecture[24,6] fusions the features in different scales.

(c) UNet architecture, which is adopted by some SOTA methods[37,34]. We use it as our
architecture.

Layer Normalization

« Although abandoned Bateh-Nermalization as the small batch size may bring the unstable
statistics, re-introduce the Instance Normalization and avoids the small batch size issue.

» However, Hinet shows that adding instance normalization does not always bring performance
gains and requires manual tuning.

o Based on these facts we conjecture Layer Normalization may be crucial to SOTA restorers, thus
we add Layer Normalization to the plain block described above.

Activation

o The activation function in the plain block, Reetifiedkinear-Unit-{Rekd), is extensively used in

computer vision. However, there is a tendency to replace ReLU with GELU in SOTA methods
[22,37,30,21,11].

» We replace ReLU with GELU in the plain block, because it keeps the performance of image
denoising while bringing non-trivial gain on image deblurring.



Attention

 Inspired by Restormer, we realize the vanilla channel attention meets the requirements:

computational efficiency and brings global information to the feature map.

 |n addition, the effectiveness of channel attention has been verified in the image restoration task,

thus we add the channel attention to the plain block.
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Fig. 3: Intra-block structure comparison. @:matrix multiplication, ©/@:elementwise
multiplication/addition. dconv: Depthwise convolution. Nonlinear activation functions are

represented by yellow boxes.

Nonlinear Activation Free Network (NAFNet)

e The baseline described above is simple and competitive, but is it possible to further improve

performance while ensuring simplicity?
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Fig. 4: lllustration of (a) Channel Attention[15] (CA), (b) Simplified Channel Attention (SCA), and
(c) Simple Gate (SG). O/*: element-wise/channel-wise multiplication.

Simple Gate Unit

o Based on these, we propose a simple GLU variant: directly divide the feature map into two parts
in the channel dimension and multiply them, as we shown in Figure 4c, noted as SimpleGate.
e The results demonstrate that GELU could be replaced by our proposed SimpleGate.

SimpleGate(X,Y) =X oY, (4)
where X and Y are feature maps of the same size.

GAUSSIAN ERROR LINEAR UNITS (GELUS):

GELU(z) = 2P(X < z) = 2®(2) = a - ; [1 + erf(m/ﬁ)] .

where @ indicates the cumulative distribution function of the standard normal
distribution. And based on [! ], GELU could be approximated and implemented
by:

0.52(1 + tanh[\/2/7(z + 0.0447152%)]). (3)

Simplified Channel Attention

o Channel Attention: it squeezes the spatial information into channels first and then a multilayer
perceptual applies to it to calculate the channel attention, which will be used to weight the feature
map.

e This inspires us to consider channel attention as a special case of GLU, which can be simplified
like GLU in the previous subsection.

Experiments

The ablation studys are conducted on image denoising (SIDD) and deblurring (GoPro) tasks. We limit
our computational budget to 16 GMACs (when input size is 256 x 256) in experiments if not specified,



following.

Using metrics:

(Peak signal-to-noise ratio, PSNR)
(Structural SIMilarity, SSIM)
(Giga Multiply AddCaculation per Second, MACs)

SIDD GoPro
Ir LN | ReLU=GELU | CA  |honp gSIM|PSNR SSIM
PlainNet | 1e™* 39.29 0.956|28.51 0.907
PlainNet*| 1e™2 - - - -
le 3 v 39.73 0.959]31.90 0.952
le 3 v v 39.71 0.95832.11 0.954
Baseline | le ™3 v v v 39.85 0.959]32.35 0.956

Table 1: Build a simple baseline from PlainNet. The effectiveness of Layer Normalization (LN),
GELU, and Channel Attention (CA) have been verified. * indicates that the training is unstable

due to the large learning rate (Ir)

SIDD GoPro
GELU—=SG | CA=SCA lpo R ssIM|PSNR SSIM
Baseline 39.85 0.959| 32.35 0.956
v 39.93 0.960| 32.76 0.960
v 39.95 0.960] 32.54 0.958
NAFNet v v 39.96 0.960]| 32.85 0.960

Table 2: NAFNet is derived from the simplification of baseline, i.e. replacing GELU to SimpleGate

(SG), and replacing Channel Attention (CA) to Simplified Channel Attention (SCA)
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Fig. 5: Qualitative comparison of image denoising methods on SIDD

MPRENet MIRNet NENet UFormer MAXIM HINet Restormer|Baseline NAFNet
Method o o h ] . .
[35] [38] [5] [34] [30] [4] [37]
PSNER 39.71

ours ours
39.72  39.75 39.89 39.96 39.99
SSIM 0.958

10.02 | 40.30  40.30
0.959 0.959 0.960 0.960  0.958 0.960 0.962 0.962
MACs(G)| 588

T8G BE.B 50.5 169.5 170.7 140 65 65

Table 5: Image Denoising Results on SIDD.

Image Deblurring

Met hod MIMO-UNet HINet MAXIM Restormer UFormer DeepRFT MPRNet

[6] [4] [30] [37] [34] [24]
PSNR 32.68 32.71  32.86 32.92
SSIM 0.959

0.959 0.961 0.961
MACS(G) 1235 170.7

Baseline NAFNet
-local[7] | ours ours
32.97 33,23 33.31 33.40 33.69
0.967 0.963 0.964 0.965 0.967
169.5 140 B20.5 187 T78.2 (i 65

Table 6: Image Deblurring Results on GoPro[25].
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Fig. 6: Qualitative comparison of image deblurring methods on GoPro[25]

Raw Image Denoising
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Fig. 7: Qualitatively compare the noise reduction effects of PMRID[33] and our porposed NAFNet.

Zoom in to see details.

Method PSNR SSIM MACs(G)
PMRID[5] S9.76  0.975 1.2
NAFNet(ours) 40.05 0.977 1.1

Table 7: Raw image denoising results on 4Scenes[33]



